Year: 2023 | Month: March | Volume 68 | Issue 1

A Review of Deep Learning Models for Price Prediction in Agricultural Commodities

Gowthaman T. Adarsh V.S. Sathees Kumar K. Manobharathi K.
DOI:10.46852/0424-2513.1.2023.25

Abstract:

Price fluctuations in agricultural commodities have a negative impact on the country’s GDP. Price prediction assists the agricultural supply chain in making necessary decisions to minimize and manage the risk of price fluctuations. Although traditional models for forecasting, such as ARIMA and exponential smoothing, are widely used, it is difficult to predict price fluctuations accurately, especially when dealing with large amounts of data. To overcome this lacuna, various machine learning and deep learning models have recently been used to forecast price series. To be precise, the most significant finding is that deep learning models are suitable for predicting commodity prices.



© This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited





Print This Article Email This Article to Your Friend

@International Journal of Fermented Foods | Association with SASNET | Printed by New Delhi Publishers

49032917 - Visitors since April 13, 2019